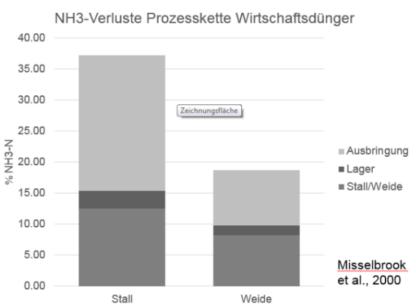
Öko-effiziente Weidemilcherzeugung Lindhof – Leistungen und ökologische Effekte nach fünf Jahren Projektlaufzeit

Dr. Ralf Loges
Universitätsversuchsbetrieb Lindhof
Institut für Pflanzenbau und Pflanzenzüchtung
Grünland und Futterbau/ Ökologischer Landbau
Christian-Albrechts-Universität Kiel

Gliederung der Vortrages

- Hintergrund des Projektes
- Vorstellung der weidebasierten Milcherzeugung auf dem Gemischtbetrieb <u>Lindhof</u>
- Vergleich von <u>Produktionskennzahlen des Lindhofes</u> zu Praxisbetrieben Schleswig-Holsteins
- Vergleich von <u>ausgewählten Umweltparameter</u>n zu ausgewählten Praxisbetrieben der Region
- Fazit


Warum der starke Fokus auf Weide? (I)

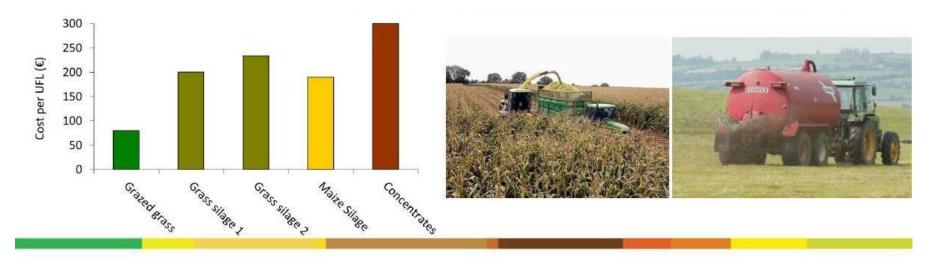
Resilienz: Weide als umweltfreundliche

Futterquelle (ROTZ et al 2009)

- Geringerer Energieaufwand,
- geringer CO₂-Fußabdruck,
- geringere NH₃-Verluste,

Tierwohldebatte Weide als natürliche Haltungsform des Steppentieres Rind **Tiergesundheit:** Bewegungsapparat wird trainiert, bessere Klauengesundheit

+ höhere Biodiversität, auch wenn das oft nicht auf den ersten Blick sichbar ist


Warum der starke Fokus auf Weide? (II)

Konsumentenpräferenzen und Gemeinwohlleistungen Große Nachfrage nach Weidemilch

(ZÜHLSDORF et al 2014)

Kosten/Ökonomische Gründe:

- Weide gilt als kostengünstigste Futterquelle (DILLON et al 2008)

Konzept der Weidehaltung auf dem Öko-Gemischtbetrieb Lindhof:

Maximierung Milchleistung aus Weidefutter bei niedrigem Einsatz von

Konzentratfutter

80 % der Proteinbereitstellung aus dem Kleegras

Umsetzung:

Weide auf zweijährigem N-autarkem Ackerkleegras

(,back to the roots' > Feldgraswirtschaft > Gemischtbetrieb)

Multi-species Kleegras

= Dt. Weidelgras (Hochzucker) + Weißklee, Rotklee sowie Einsaat von Futterkräutern: Zichorie, Spitzwegerich, Kümmel, Hornschotenklee

Portionsweide 2x täglich zugeteilt mit Rising-Platemeter nach Bedarf

(max. 3-Blattstadium/10cm Wuchshöhe, Abweideziel 4cm, durchnittl. 7 MJ NEL kg/TM)

- Lange Weideperiode ab Anfang März Ende Oktober/Mitte Nov.
- Saisonale Blockabkalbung Februar/März 70 Jerseys + 30 Kreuzungen
- Einbeziehung von Kleegrasuntersaaten und Zwischenfrüchten in die Weide

Gemischtbetrieb: Alle Wirtschaftsdünger fließen in den ökolog. Ackerbau Kombination v. Milchproduktion u. Extensivrindermast mit Direktvermarktung

Lindhof

Betriebsspiegel

(2021)

2019 1. Flächenausstattung Betriebsfläche 185,7 ha

> Landwirtschaftliche Nutzfläche 157,7 ha netto

-> Acker 110,1 ha

-> (+ Kleegras in Futter-Mist-Kooperation) 20,0 ha) 7,1 ha

-> Grünland (intensiv)

-> Grünland (extensiv, Nutzungsauflagen) 40,6 ha

Ökologischer Landbau nach Bioland u. Naturland-Richtlinien **Bewirtschaftungsform:**

Bodenart und sandiger Lehm, lehmiger Sand (durchschn. 43 Bodenpunkte),

114 ha Flächen arrondiert am Hof -bewertung:

Niederschläge: 785 mm p. a.

Temperatur: Jahresmittel 8,7 °C

2. Anbaustruktur

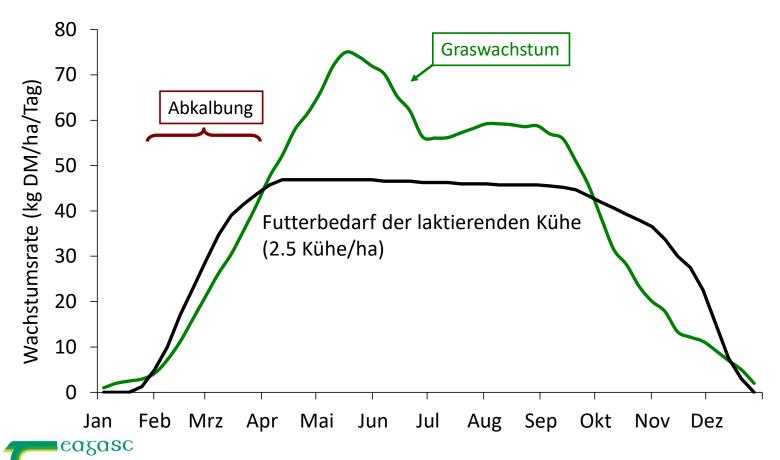
Ökologischer Gemischtbetrieb basiert auf als Milchviehweide genutztem 2-3jährigem Kleegras

1. Kleegras – 2. Kleegras – (3. Kleegras oder 5 ha Silomais –) 4. Speisehafer Fruchtfolge:

- 5. Wintergetreide mit Kleegrasuntersaat (durchschnittlicher Fruchtfolgeanteil Kleegras 50%)

3. Viehwirtschaft (Viehbesatz 0,8 GV/ha)

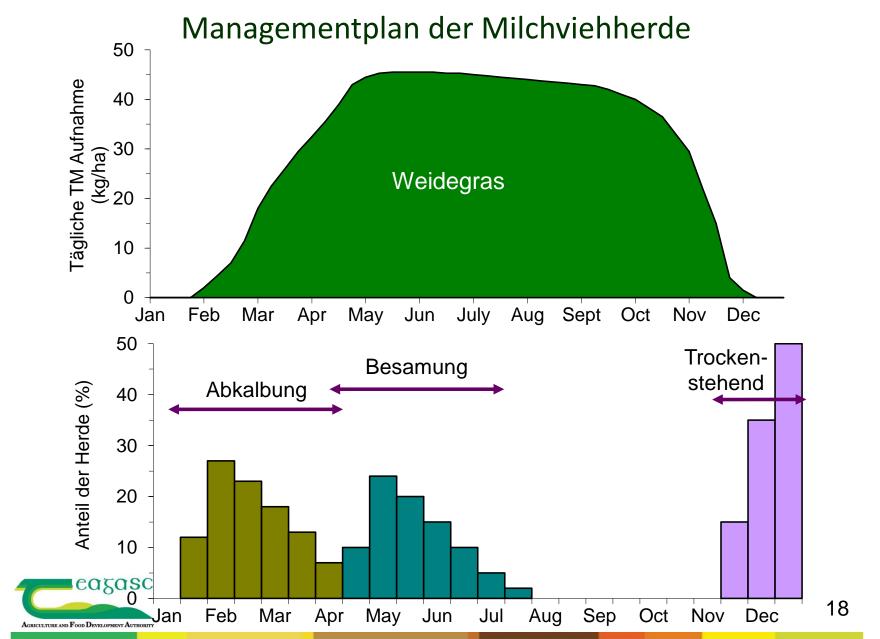
- 1. 100 Milchkühe gehalten im Vollweidesystem mit geringem Kraftfuttereinsatz auf 55 ha Kleegrasmähweide, 70 Jersey- Herdbuchtiere, 21 irische Milchrindkreuzungsrinder, 9 Angler.
- 2. Nachzucht
 - a) für Remonte und Bestandeserweiterung (25%) gehalten auf Dauergrünland und nach dem Leader-Follower-Prinzip als Nachputzer der Kleegrasflächen
 - b) Mastkreuzungen für Direktvermarktung (ebenfalls 25% eines Kälberjahrgangs), extensive Weidemast auf Naturschutzgrünland ohne Einsatz von Kraftfutter


Saisonale Frühjahrsabkalbung nach irischem Vorbild

 $C \mid A \mid U$

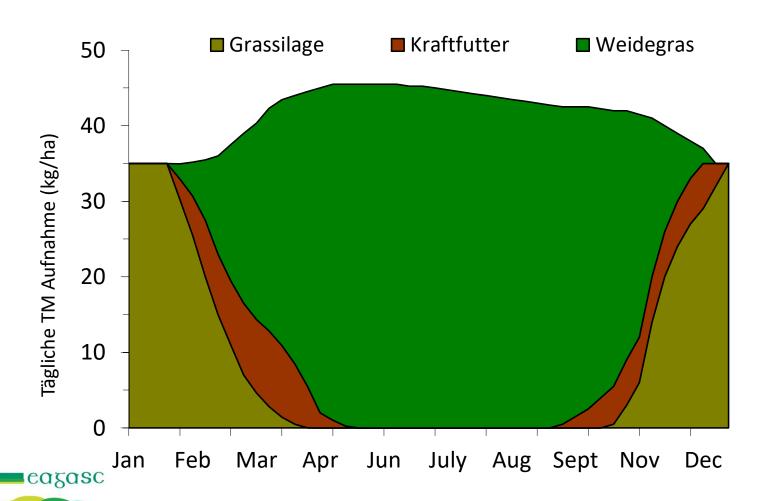
Das Irische System – Schematische Darstellung unter irischen Verhältnissen

Graswachstumskurve und Futterbedarf


(Ziel ist es, Futterbedarf und Graswachstum zu synchronisieren)

Hintergrund des Projektes:

Das irische Sytem (Humphreys, 2016)


Hintergrund des Projektes:

C

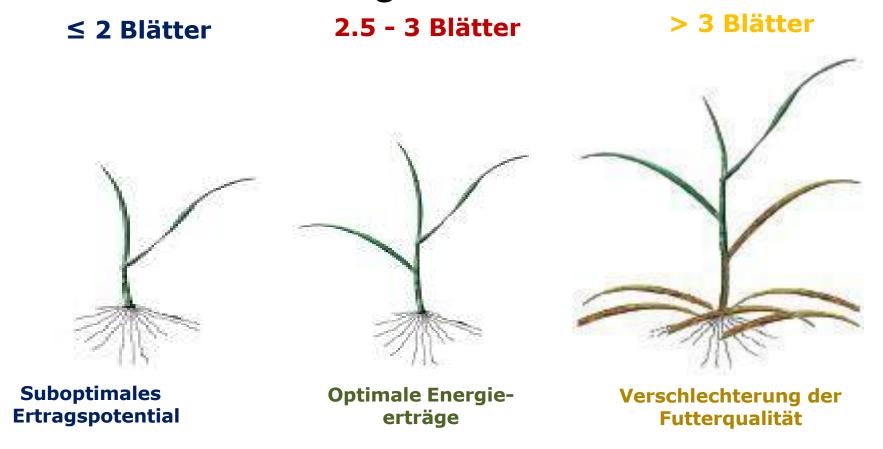
 $\mathsf{A} \mid \mathsf{I}$

Das irische Sytem (Humphreys, 2016)

Jährliche Rationszusammensetzung einer frühjahrskalbenden Milchviehherde

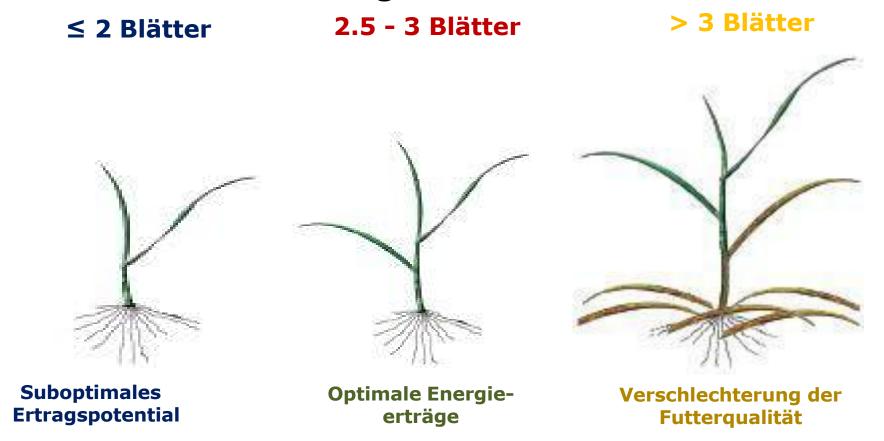
Hintergrund des Projektes:

Das irische Sytem (Humphreys, 2016)


C | A | U

Rotationsweidesystem

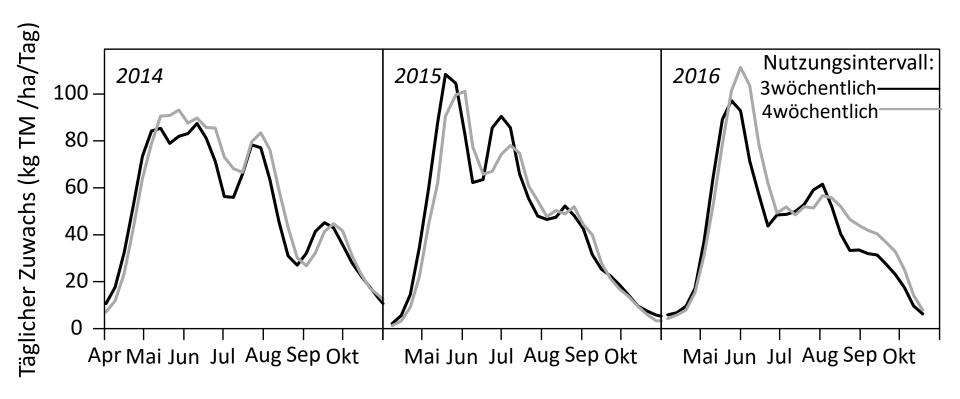
4 cm	10 cm	9 cm	8 cm	7 cm	6 cm	5 cm	4.5 cm



Beweidung im 3-Blattstadium

Source: Schleip et al., 2011

Beweidung im 3-Blattstadium



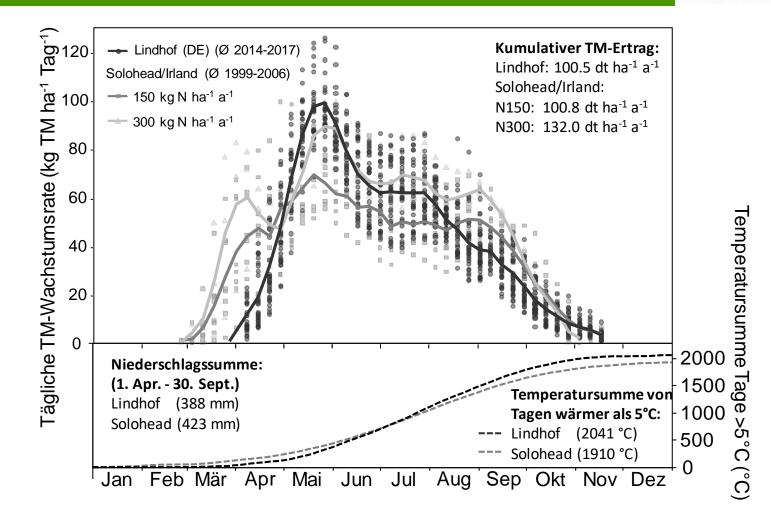
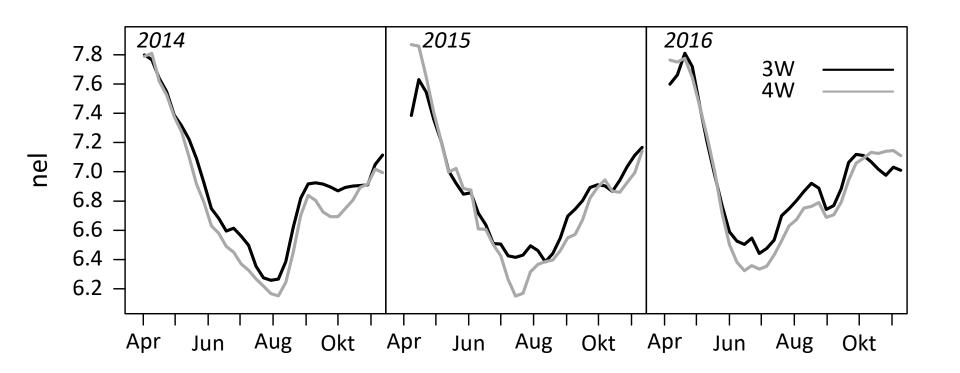
Source: Schleip et al., 2011

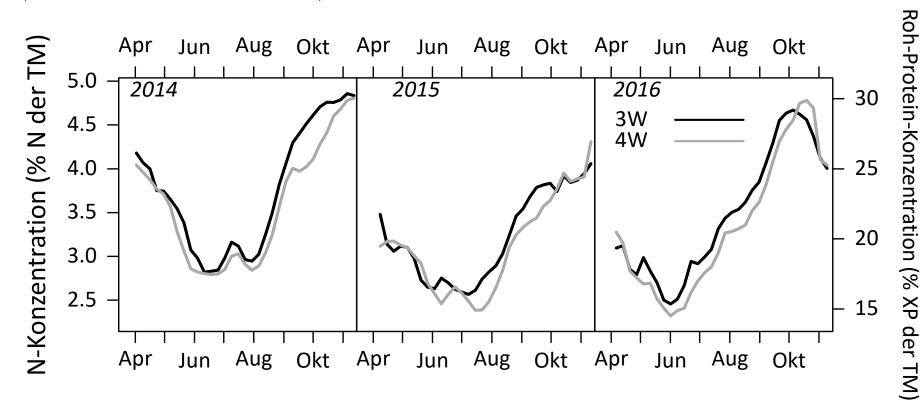
Allerdings: je häufiger eine Fläche genutzt wird, desto stärker nehmen auch der Wurzeltiefgang und die Wurzelmasse ab (Klapp, 1971). Zu beachten auf trockenheitsgefährdeten Standorten

C | A | U

Zuwachs von Kleegrasbeständen auf dem Lindhof in Abhängigkeit vom Nutzungsintervall (alle 3 versus alle 4 Wochen)

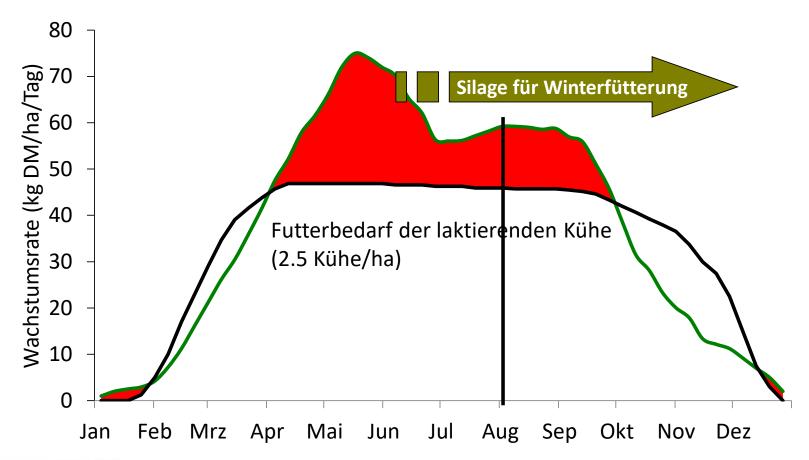
Christian-Albrechts-Universität zu Kiel


Abb. 1: a) Tägliche Wachstumsraten (kg TM ha⁻¹ Tag⁻¹) für Kleegras ohne zusätzliche N-Düngung des Lindhofes (2014-2017) im Vergleich zu täglichen Wachstumsraten von Dauergrünland auf Solohead Research Farm (1999-2006), welches mit 150 bzw. 300 kg N ha⁻¹ Jahr⁻¹ gedüngt wurde,

b) Temperatursumme von Tagen wärmer als 5° C auf dem Lindhof (2014-17) im Vergleich zu Solohead (1999-2006)

Veränderung der Energiekonzentration [MJ NEL je Kg TM] von Kleegras im Jahresverlauf in Abhängigkeit der Faktoren Versuchsjahr und Aufwuchsdauer (alle 3 versus alle 4 Wochen)


Veränderung des Rohproteingehaltes [% RP der TM] von Kleegras im Jahresverlauf in Abhängigkeit der Faktoren Versuchsjahr und Aufwuchsdauer (alle 3 versus alle 4 Wochen)

Das irische Sytem (Humphreys, 2016)

Graswachstumskurve und Futterbedarf

(Überschuss im Sommer)

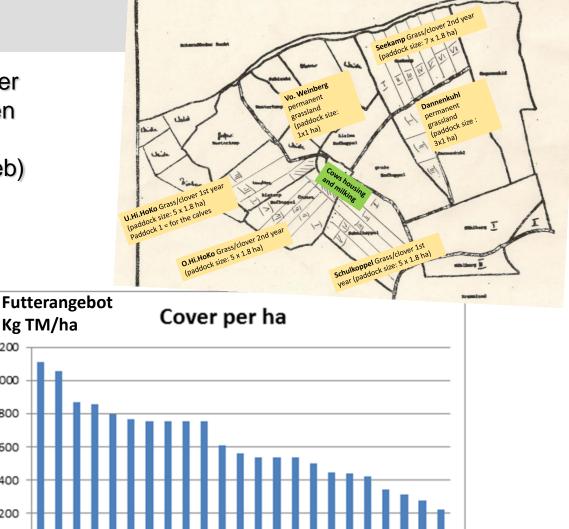
Werkzeuge zur Optimierung Weidemanagement

Kg TM/ha

1200

1000

800


600

400

200

- Gezielte Portionsweide nach jeder Melkzeit, basiert auf wöchentlichen Platemetermessungen (Beweidungsziel: 3 Blätter/Grastrieb)

20 21 22 23 1 13 9 10 11 12 4 14 19 3 15 17 16

Laufende Parzellen Nummer

Werkzeuge zur Optimierung Weidemanagement Die Digitale Lösung: Das System Grasshopper

Nutzung des Technischen Fortschritts aus Irland

Anzeige auf dem Handydisplay: 19 von 20 Messpunkten sind erfasst

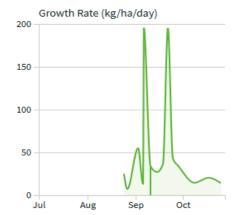
Werkzeuge zur Optimierung Weidemanagement Die Digitale Lösung: Das System Grasshopper

$C \mid A \mid U$

Verfügbarer Weideaufwuchs je Schlag

= Bedarf, hier für 10 Std. Halbtagsweide (Trockenheits-bedingt)

<<


= durchschnittlicher Aufwuchs (verfügbar) Rotation length (days) = hier 15 Tage (wegen noch Trockenheits-bedingt verhaltenem Nachwuchs)

September 2018	
----------------	--

Sun	Mon	Tue	Wed	Thu	Fri	Sat
						1
2	3	4	5	6	7	8
9	10	11	12	13	14	15
16	17	18	19	20	21	22
23	24	25	26	27	28	29
30						

500 m

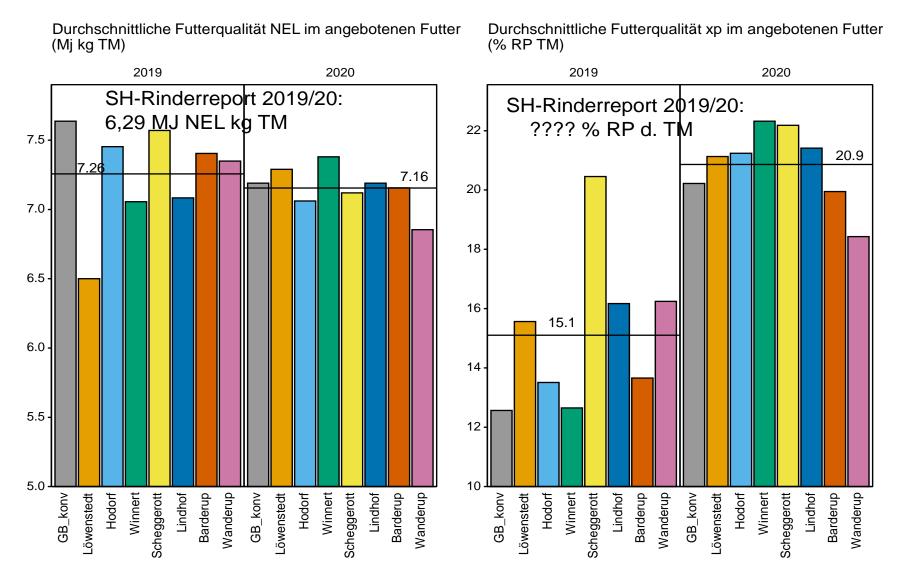
Grasshopper™

Farm Metrics

Current Total Farm

Cover	9670kg
Display-Group Cover	10890kg
Total Daily Requirement	8kg
Daily Growth	1058kg (33.84kg/ha)
Year to Date Growth	9702.38kg (183.77kg/ha)

Weitere Einordnung der Weideleistung der Betriebsschläge des Lindhofes im Vergleich zu 7 konventionellen Weidebetrieben (5 davon saisonale Herbstabkalber, 4 davon Kurzrasenweidebetriebe)


Ergebnisse aus dem EIP-Projekt Weidemanager Schleswig-Holstein

Futterqualität des Weideaufwuchses im Jahresmittel bei intensiver Weideführung auf Betrieben mit Kurzrasenweide (konstant beweidet), Schnellrotationsweide (1 mal die Woche) und Tagesportionsweide mit Aufwuchsdauern 2-3 Wochen)

Nettoenergie-Gehalt [MJ NEL je kg TM] Rohproteingehalt [% RP der TM]

Top Silo-Qualität wenn praktisch weidereif geerntet wird 2017

PRUFBERICHT 777247 - 927446

Auftrag 777247 Ralf Loges

 Analysennr.
 927446

 Probeneingang
 24.07.2017

 Probenahme
 22.05.2017

Kunden-Probenbezeichnung Grassilage 4 Schnitt-Nr.:1 Dannenkuhl Tierart:Milchkuh

Futtermittelcode Grassilage 1.Schnitt, 7.01.01

Orientierungswerte

1,86 DIN EN ISO 11885 (E 22)

	Einheit	Ergebnis \	Wert i.d.TS	in TS	Mittelwerte	Methode
Nährwerte/Inhaltsstoffe						
Trockenmasse	%	36,2			34,78	VO(EG) 152/2009, III, A
Wasser berechnet	%	63,8			65,22	Berechnung
Rohasche	%	3,4	9,3		9,48	NIR
Rohprotein	%	6,1	16,8		14,8	NIR
Reineiweiß	%	2,2	6,2		5,28	NIR
Rohfaser	%	7,2	20,0			VO(EG) 152/2009, III, I
Rohfett	%	1,4	3,8		3,1	NIR
NDF	%	11,8	32,5		51,79	NIR
ADF	%	9,1	25,2		33,99	
ADF org	%	8,0	22,1		30,22	NIR
Zucker	%	4,5	12,3		4,79	NIR
Cellulase-Test	%	3,7	10,3		26,53	NIR
Berechnete Werte (Nährwerte/	Inhaltssto	ffe)				
Sand (errechnet)	%	0,5	1,5		1,77	Berechnung
nutzbares Rohprotein	g/kg	56,0	154,7		131,22	Berechnung GfE 2008
ruminale N-Bilanz	g/kg	0,8	2,1			Berechnung GfE 2008
Anteil Reineiweiß am Rohprotein	%		36,9		35,96	Berechnung
Anteil Nicht-Protein-N (Fraktion A) am Rohprotein	%		63,1		64,04	Berechnung
ME - Rind	MJ/kg	4,3	11,8		9,92	Berechnung GfE 2008
NEL	MJ/kg	2,6	7,3			Berechnung GfE 2008
NFC	%	13,6	37,6		20.82	Berechnung
ELOS	%	29,1	80,4		64,09	VDLUFA III, 6.6.1 (berechnet)
Strukturwert (SW)	/ kg	0,8	2,3		3	Berechnung
Mineralstoffe/ Spurenelemente					•	
Calzium	g/kg	3,3	9,0		4,97	DIN EN ISO 11885 (E 22)
Phosphor	g/kg	1,3	3,5			DIN EN ISO 11885 (E 22)
Natrium	g/kg	0,1	0,4			DIN EN ISO 11885 (E 22)
Kalium	g/kg	11,6	32,1			DIN EN ISO 11885 (E 22)

0,5

1,5

Erläuterung: Substanz: OS=Originalsubstanz, TS=Trockensubstanz

Magnesium

g/kg

Top Silo-Qualität wenn weidereif geerntet wird 2016

Datum 24.10.2016 Kundennr. 5000990

PRÜFBERICHT 574983 - 916360

Auftrag 574983 Lindhof Heu/Silage

 Analysennr.
 916360

 Probeneingang
 14.10.2016

 Probenahme
 12.10.2016

Kunden-Probenbezeichnung Probe 9/Silage Kleegras Futtermittelcode Grassilage, 7.01.01

Orientierungswerte

Einheit Ergebnis Wert i.d.TS in TS Mittelwerte Methode

Nährwerte/Inhaltsstoffe

Trockenmasse	%	36,5		51,3	VO(EG) 152/2009, III, A	n)
Wasser berechnet	%	63,5		48,7	Berechnung	n)
Rohasche	%	3,3	9,0	10,23	NIR	n)
Rohprotein	%	5,4	14,9	15,38	NIR	n)
Reineiweiß	%	1,5	4,2	6,39	NIR	n)
Rohfaser	%	7,1	19,5	24,32	NIR	n)
Rohfett	%	1,3	3,6	3,27	NIR	n)
NDF	%	12,8	35,2	49,19	NIR	n)
ADF	%	9,5	26,0		NIR	n)
ADF org	%	8,1	22,3	29,24	NIR	n)
Zucker	%	5,8	16,0	8,89	NIR	n)
Cellulase-Test	%	4,6	12,7	26,86	NIR	n)

Berechnete Werte (Nährwerte/Inhaltsstoffe)

		,				
Sand (errechnet)	%	0,4	1,2	2,45	Berechnung	n)
nutzbares Rohprotein	g/kg	54,6	149,5	129,21	Berechnung GfE 2008	n)
ruminale N-Bilanz	g/kg	0,0	-0,1	2,21	Berechnung GfE 2008	n)
Anteil Reineiweiß am Rohprotein	%		28,2		Berechnung	n)
Anteil Nicht-Protein-N (Fraktion A) am Rohprotein	%		71,8	53,46	Berechnung	n)
ME - Rind	MJ/kg	4,2	11,6	9,8	Berechnung GfE 2008	n)
NEL	MJ/kg	2,6	7,1	5,82	Berechnung GfE 2008	n)
NFC	%	13,6	37,3	21,29	Berechnung	n)
ELOS	%	28,6	78,3	62,63	VDLUFA III, 6.6.1 (berechnet)	n)
Strukturwert (SW)	/ kg	0,8	2,2	2,86	Berechnung	n)

Mineralstoffe/ Spurenelemente

Calzium	g/kg	3,1	8,6	4,61	DIN EN ISO 11885	n)
Phosphor	g/kg	1,4	3,9	3,74	DIN EN ISO 11885	n)
Natrium	g/kg	0,2	0,6	1,97	DIN EN ISO 11885	n)
Kalium	g/kg	11,4	31,2	28,9	DIN EN ISO 11885	n)
Magnesium	g/kg	0,7	1,9	1,92	DIN EN ISO 11885	n)

 $\mathsf{C} \mid \mathsf{A} \mid \mathsf{U}$

 $C \mid A$

Kundennr.

A

780862

PRÜFBERICHT 870423 - 884688

Auftrag 870423

Analysennr. 884688

Probeneingang 18.12.2018
Probenahme 17.12.2018

Probenehmer Keine Angabe

Kunden-Probenbezeichnung 5SFSI3605a00 Nasschemie

Futtermittelcode Grassilage 1.Schnitt, 7.01.01

Einheit

Orientierungswerte Mittelwert

Ergebnis Wert i.d.TS in TS in TS Methode

Nährwerte/Inhaltsstoffe

Trockenmasse	%	45,1		30 - 40	39,47	VO(EG) 152/2009, III, A : 2009- 02
Wasser berechnet	%	54,9			60,53	Berechnung
Rohasche	%	3,6	7,9		10,05	VO(EG) 152/2009, III, M
Rohprotein	%	5,8	12,8			VO(EG) 152/2009, III, C
Rohfaser	%	8,7	19,4			VO(EG) 152/2009, III, I
Rohfett	%	1	3		4,12	VO(EG) 152/2009, III, H, Verfahren B

Berechnete Werte (Nährwerte/Inhaltsstoffe)

nutzbares Rohprotein	g/kg	64,0	141,9	DLG-Futterwerttabelle
ruminale N-Bilanz	g/kg	-1,0	-2,2	DLG-Futterwerttabelle
ME - Rind	MJ/kg	5,1	11,2	DLG-Futterwerttabelle
NEL	MJ/kg	3,1	6,8	DLG-Futterwerttabelle

Die ggf. angegebenen Mittelwerte wurden aus Proben (unabhängig vom Bundesland) der Silagesaison 2018 ermittelt. Die ggf. angegebenen Orientierungswerte wurden dem "Praxishandbuch Futter- und Substratkonservierung, 8. vollständig überarbeitete Auflage 2011 (DLG Verlag)" entnommen

Erläuterung: Substanz: OS=Originalsubstanz, TS=Trockensubstanz

Ergebnisse: Produktionskennzahlen

Es folgen Produktionskennwerte des Lindhofes des Wirtschaftsjahres 2019/20 im Vergleich zu einer aus 356 Betrieben bestehenden Unterauswahl der im Rahmen der Vollkostenauswertung der Rinderspezialberatung in Schleswig-Holstein 2019/20 ausgewerteten 803 Milchviehbetriebe (Quelle: LK SH 2020).

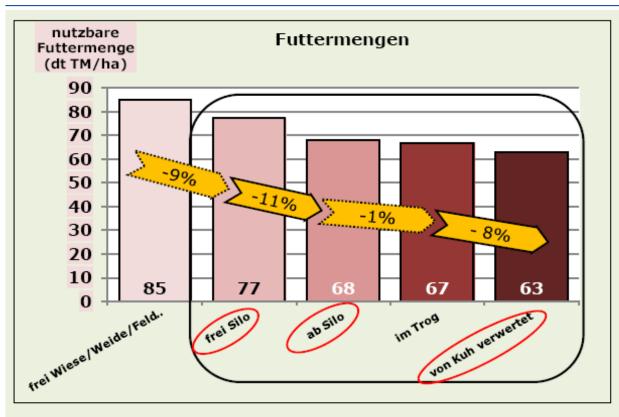
(Die getroffene Auswahl betrifft die Untergruppe aller mit der Software BZA-Online ausgewerteten Betriebe, die Herdenleistungen dieser Betriebe liegen ca. 5 % über dem Gesamtdurchschnitt)

Aus Mues, et al.

DLG-Mitteilungen November 2021

Produktionskennwerte im Vergleich Milchproduktion incl. Färsenaufzucht	Einheit	Lindhof	Durchschnitt von 356 BZA- voll ausgew. Betriebe in SH	Produktionskennwerte Lindhof im Vergleich zu 356 in der Vollkosten-
Produktionstechnik				auswertung der
Kuhbestand	Stück	94	166	Rinderspezialberatung in
Lebendgewicht	kg/Kuh	470	670*	Schleswig-Holstein
Milchleistung ECM	kg ECM/Kuh	7007	9433	2019/20 ausgewerteten
Milchleistung natural	kg/Kuh	5728	9257	Milchviehbetrieben
Milch je kg Lebendgewicht	kg ECM/kg LG	14,90	14,08	(Quelle: LK SH 2020)
Fett plus Eiweiß	kg/Kuh	592	702	*Schätzwert im Durchschnitt der Rassen
Fett	%	5,59	4,2	**ohne Flächenbedarf Importfuttermittel
Eiweiß	%	3,99	3,45	***inklusive Färsenaufzucht
Kraftfutter/Kuh/Jahr	dt/Kuh	8,00	28,10	° aus ökolog. Produktion zu 63 % höherem Preis
Kraftfutter/kg ECM Milch	g/kg ECM	120	295	^a Betriebe in der gleichen Region
Milchproduktion je ha HFF on farm**	kg ECM/ha HFF	10946	14866	 Hoftor-N-Bilanz d. Teilbetriebs Milchproduktion Berechnet auf Basis Nährstoffbericht SH 20120
Grundfutterleistung laut BZA-Berechnung	kg ECM/Kuh	5284	3767	ö aus ökolog. Produktion zu 63 % höherem Preis
Grundfutterleistung, anteilig Gesamtration	%	75,41	39,93	Abkürzungen:
bereinigte Reproduktionsrate	%	18,20	33,40	SH = Schleswig-Holstein,
Erstkalbealter (LKV-Jahresbericht 2020)	Monate	24,6	28,4 ª	ECM = Energie korrigierte Milch,
Zwischenkalbezeit (LKV-Jahresbericht 2020)	Tage	362	400 ^a	HFF = Hauptfutterfläche,
Tierarzt, Medikament + Klauenpflege	ct/kg ECM	1,48	1,64	BZA = Betriebszweigabrechnung
Futterkosten je kg erzeugte ECM-Milch***	ct/kg ECM	18,63	22,12	
Grundfutterkosten (anteilig)	ct/kg ECM	12,17	13,35	Grundfutterleistung wenn
Kraftfutterkosten (anteilig)	ct/kg ECM	6,46°	8,77	Kraftfutter sich auch am
Weitere Kennzahlen:				Erhaltungsbedarf beteiligt:
Mineral-N-Dünger- Aufwand (kg/ha HFF)	kg N/ha HF	0	99	Lindhof 5865 kg ECM/Kuh
N-Bilanz ^b (Teilbetrieb Milch)	kg N/ha HF	88	149 ^c	BZA-Betriebe: 5519 kg/Kuh

Vollkostenauswertung des Wirtschaftsjahres 2019/2020 von Mähweide auf dem Lindhof (8mal beweidet und im Durchschnitt 2 Silo-Schnitte strategisch während der Weidephase, auch zwischen Beweidungen) im Vergleich zu Gras- und Maissilage als wichtigste Grundfuttermittel der 356 in Schleswig-Holstein intensiv ausgewerteten Rinderspezialberatungsbetriebe 2019/2020


Vollkostenauswert				
2019	/20	Mähweide	BZA 2019/20	BZA 2019/20
		Lindhof	Grassilage	Maissilage
Energieertrag	MJ NEL/ha	57228	57593*	84746*
Energiegehalt	MJ NEL/kg TM	6,8	6,1*	6,49*
Rohproteinertag	kg XP /ha	1275	1456	1449
Rohproteingehalt	% XP d. TM	15,2	12,7	6,9
Summe Kosten	€ /ha	943,75	1865,98*	2039,44*
Gesamtkosten	ct/10 MJ NEL	16,47	<i>32,</i> 40*	24,07*
Gesamtkosten	ct/kg XP	0,74	1,28	1,41

(*Quelle: LK SH 2020)

Futtererzeugungskosten unter Einbeziehung der Flächenkosten Cent/10 MJ NEL mit Fläche (netto = nach Verlusten = Basis aufgenommenes Futter) **Cent/10 MJ NEL mit Fläche (brutto = vor Verlusten)** Grassilagen Weide **Silomais** Grassilagen Weide **Silomais Preis** 35konv. 25 30-Kraft-27.1 20.2 25.2 25-20 18.7 futter: 20-15.1 SH15 16.8 15-19/20: 10-10-42,01ct 5. 5. je 10 MJ Winnert Lindhof Winnert 0 Hodorf Scheggerott Winnert Lindhof -öwenstedt Lindhof Hodorf Hodorf Scheggerott Enr/kg Xb mit Lindhof

Lindhof Scheggerott GB_konv GB_konv -öwenstedt Löwenstedt Hodorf Lindhof Scheggerott Winnert **NEL** Eur/kg XP mit Fläche (netto = nach Verlusten = Basis aufgenommenes Futter) Weide Grassilagen Grassilagen Weide **Silomais** Silomais 3.5 2.5 3.0 2.0-1.82 2.5 2.45 1.5-2.0 1.5 1.0-0.837 1.12 0.679 1.0 0.7540.5 0.5 0.0 GB_konv Winnert Lindhof Hodorf Scheggerott Winnert Lindhof Winnert Lindhof Löwenstedt Hodorf Scheggerott GB_konv Hodorf Scheggerott Winner Lindhof Hodorf GB_konv Löwenstedt Löwenstedt Hodorf Lindhof GB_konv Löwenstedt Scheggerott Hodorf Winnert Scheggerott GB_konv Löwenstedt Winnert Scheggerott GB_konv Löwenstedt Lindhof

Futterverluste: Schritt 3. Schätzung der Futterverluste auf den Einzelbetrieben differenziert nach Einzelmonaten

TM-Verluste bis zu 30 % vom Feld bis zum Trog

Quelle: Darstellung Dorfner, IBA, 2013

Datengrundlage: Köhler 2013;

Grobfutter: Mais-, Grassilage und Heu

Eiweißversorgung aus dem Grobfutter über gesamte Produktionskette betrachten

- ➤ TM-Verluste
- Proteinabbau bei der Konservierung

Weitere Ergebnisse mit wirtschaftlicher Relevanz für den Lindhof:

Täglicher Arbeitszeitaufwand fällt mit dem

Weideaustrieb!

7 Std Vollweidezeit (Juni): versus 10 Std Vollstall (Mitte Februar)

Reduzierter Gülleanfall (m³/Jahr)

(inklusive Regenwasser/ Melkstandspülwasser tatsächlich 3000 m³ statt rechnerisch 5000 m³ bei Vollstallhaltung

Ergebnisse Product Carbon-Footprint Milch

Datenbasis:

2jährige Erhebung von <u>Leistungen, Futter- und Energieverbrauch sowie Maschineneinsatz auf 4 Milchviehbetrieben</u> im östlichen Hügelland Schleswig-Holsteins).

- Erhebung der Lachgas- (N₂O-) Emisionen) mit der closed chamber Methode
- Messung der Nitrat-Auswaschung mit keramischen Saugkerzen Die Emission aus der NH₃ Ausgasung auf der Weide wurden abgeleitet nach Sommer et al., 2019.
- Gasförmige Emissionen in bezug auf Dunglagerung u. –ausbringung wurden gemäß der IPCC-Richtlinen berechnet.
- Methan Emissionen aus der ruminalen Verdauung wurden nach Schils et al., 2007 abgeleitet

Ergebnisse Product Carbon-Footprint Milch

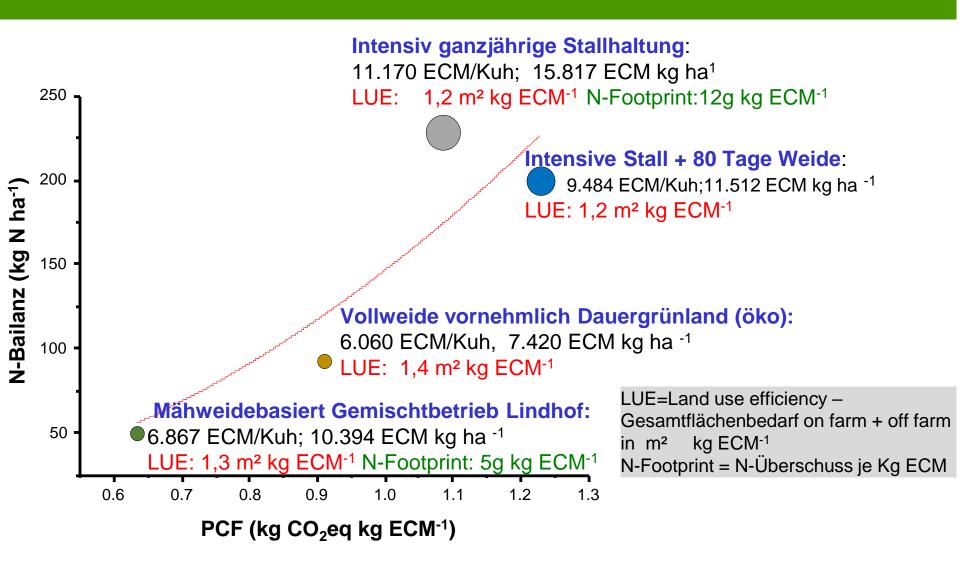
Datenbasis

2jährige Erhebung von Leistungen, Futter- und Energieverbrauch sowie Maschineneinsatz auf 4 Milchviehbetrieben im östlichen Hügelland (S-H).

Erhebung der Lachgas- (N₂O-) Emisionen) mit der closed chamber Methode

Messung der Nitrat-Auswaschung mit keramischen Saugkerzen

Die Emission aus der NH₃ – Ausgasung auf der Weide wurden abgeleitet nach Sommer et al., 2019.


Gasförmige Emissionen in bezug auf Dunglagerung u. –ausbringung wurden gemäß der IPCC-Richtlinen berechnet.

Methan Emissionen aus der ruminalen Verdauung wurden nach Schils et al., 2007 abgeleitet

PCF-Milch des Lindhofs im Vergleich mit 3 verschiedenen spezialisierten Milchviehbetrieben der gleichen Region:

- 1) Konventionell, ganzjährige Stallhaltung: 11170 kg ECM Kuh⁻¹ Jahr⁻¹
- 2) Konventionell, begrenzte Beweidung: 9484 kg ECM Kuh⁻¹ Jahr⁻¹
- 3) Öko low input / Vollweide auf Dauergrünland 6060 kg ECM Kuh-1 Jahr-1

Ergebnisse Product Carbon-Footprint Milch

Reinsch T, Loza C, Malisch CS, Vogeler I, Kluß C, Loges R, Taube F 2021. Toward Specialized or Integrated Systems in Northwest Europe: On-Farm Eco-Efficiency of Dairy Farming in Germany. Front. Sustain. Food Syst. 5, 614348. https://doi.org/10/gj68j4

Fazit

Die Ergebnisse vom Versuchsbetrieb Lindhof unterstreichen das große Potential von Weidehaltung zur tiergerechten, kostengünstigen und nachhaltigen Milcherzeugung

Fazit

Antibiotic reduction | Poultry farmers lead the way Mallorca | Tourism needs local farming

THE FURROW

FEBRUARY 2017

EDITORIAL

top: At the University of Kiel's trial farm, "Lindhof", researchers study the economic and ecological benefit of grazing systems. Left: A testing installation for climate gase emissions on a trial field at "Lindhof"

In Germany, turning cows out to pasture has become quite unusual — only 42% of cows have access to grassland. However, in 2014, 51.5% of consumers said they wanted milk from grazed cows, and some supermarkets are now paying the equivalent of a 0.4p/litre premium for it.

The University of Kiel has been carrying out research on organic farming since 1994, and its findings are just as relevant to conventional producers. It has found that grassland farming lowers milk production costs, improves biodiversity and lowers dairy farms' CO, footprints.

The team is currently developing a pasture management system for differing landscape types, which will culminate in a Smart Grazing app. Due to be released in 2018, the app will forecast a farm's daily grass growth rates, based on data including weather, region, fertiliser and soil. The aim is to provide farmers with a decision-making tool: When to turn out, reseed, and cut sliage, for example.

Lindhof – one of the university's research farms – is studying the economic and ecological benefits of grassland farming. It has found the best forage mix is high quality grass, to provide energy, with clover supplying the protein.

"In the past, farmers used to let the grass grow as high as their boots, but now we only let it grow to about 10cm," says scientific manager Ralf Loges. At this height, the cows can pluck up young grass with a single bite, reducing wastage and improving rumen efficiencies. Research has shown that purchased concentrates with an energy content of 10MJ cost around 41p, with maize silage of the same quality costing 22p. "With pasture feeding, the price can be significantly below 18p."

The project is already producing a lot of food for thought. "The abandonment of quotas and the drop in milk price have caused people to rethink things." Ralf explains. "We see this in the increasing number of visitors we have, especially conventional farmers."

Grazing management in the spotlight

Vielen Dank fürs Zuhören

Wir gehen wieder nach draußen!