

Messung der Treibhausgasemissionen

Bärbel Tiemeyer^{1,*}, Sebastian Heller¹, Willi Oehmke¹, Melanie Bräuer^{1,2}, Ullrich Dettmann^{1,3}

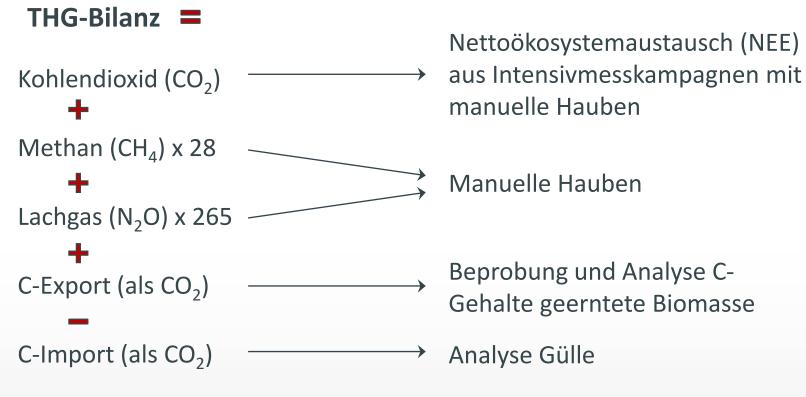
*Kontakt: baerbel.tiemeyer@thuenen.de

¹ Thünen Institut für Agrarklimaschutz

² Landesamt für Landwirtschaft, Umwelt und ländliche Räume (Flintbek, SH)

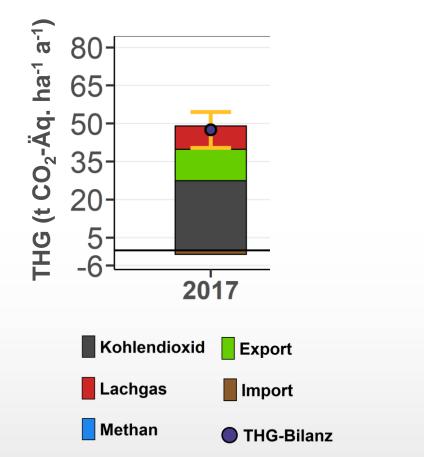
Fragestellung

Auswirkung von


- Wassermanagement (Unterflurbewässerung, Grabeneinstau),
- Grünlanderneuerung (flacher Umbruch, Direktsaat), und
- Kleiüberdeckung (mit unterschiedlichen Eigenschaften der Kleidecke)

auf die Emissionen von Kohlendioxid (CO₂), Methan (CH₄) und Lachgas (N₂O).

Methoden: Komponenten der Treibhausgasbilanz


(Tonnen CO₂-Äquivalente pro Hektar)

Treibhauspotenzial bzw. CO_2 -Äquivalente über 100 Jahre (GWP100) nach IPCC AR5: Lachgas 265, Methan 28

DOC-Verluste nicht berücksichtigt

Beispielabbildung für Jahresbilanz


Methoden: Messung der Lachgas- und Methanemissionen

0.50

 N_2O (ppm)

Messung am der N₂Ound CH₄-Konzentrationen

Flussberechnung und 0.45 Interpolation von 0.40 Jahreswerten (Hüppi et al., 2018; OESTMANN et al., 0.35 2021) 0.30

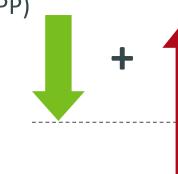
Generelles Messprinzip: Anstieg (oder Abfallen) von Gaskonzentrationen in der Messhaube über einen definierten Zeitraum und eine definierte Fläche

120

Stärkere Steigung = höhere Gasflüsse

Dauer (min)

Messung alle 2 Wochen mit nicht-transparenten Hauben, nach Düngung im Abstand von 1, 3 und 7 Tagen


Fotos: B. Tiemeyer

Methoden: Messung des CO₂-Austauschs

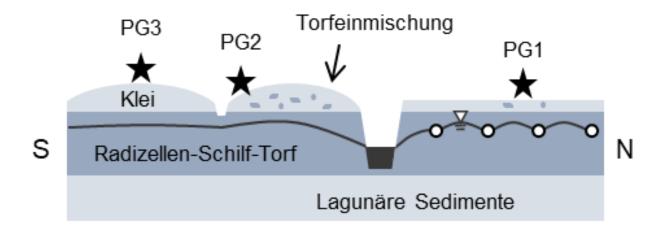
Photosynthese

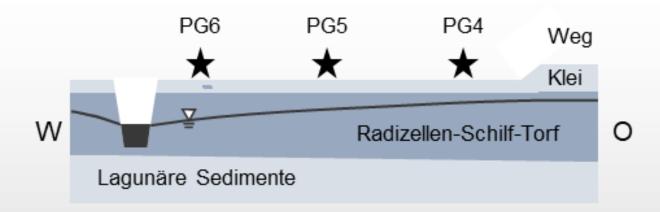
(GPP)

Ökosystematmung (R_{eco})

= Bodenatmung + Pflanzenatmung

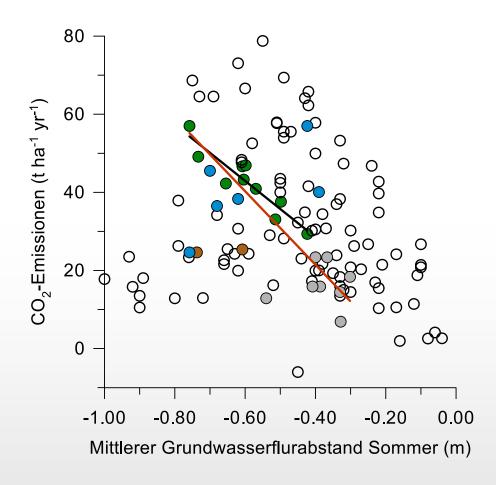
Netto-Ökosystemaustausch (NEE)





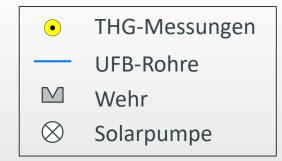
- alle 3-4 Wochen ganztägige
 Intensivmesskampagnen (vor Sonnenaufgang bis Nachmittag) mit nicht-transparenten und transparenten Hauben
- Messung der CO₂-Konzentration im Gelände mit mobilem Analysator
- Bodentemperatur, Strahlung, Entwicklungsstand der Pflanzen (Details: OESTMANN et al., 2021)

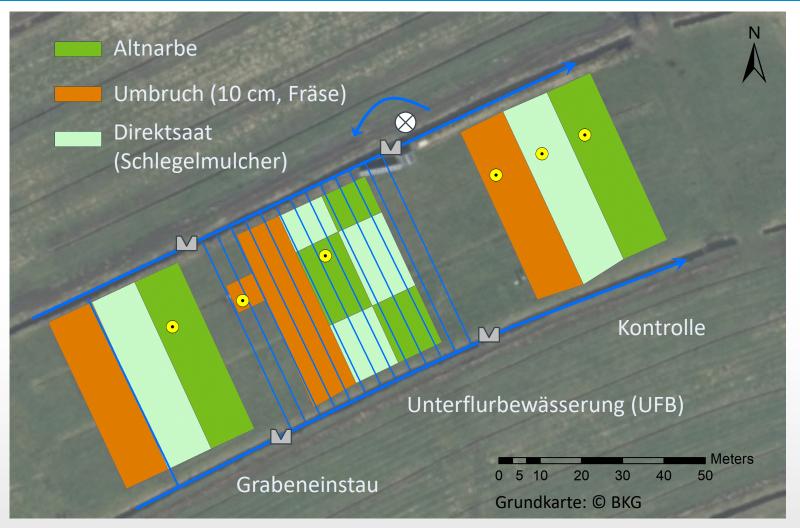
Messvarianten Pumpgebiet



- Messung über 2 Jahre
- Grünland, 3 bis 5 Schnitte
- Stickstoffdüngung:
 167-240 kg N ha⁻¹ a⁻¹ (Rindergülle & mineralischer Dünger)
- Jahresmittel Moorwasserflurabstände:
 -0,62 m bis -0,26 m
- Teilweise Torfeinmischung im Klei

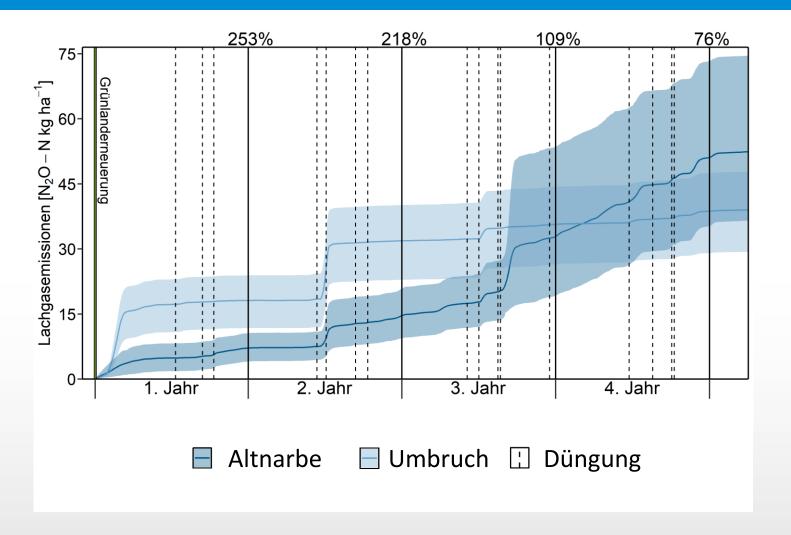
Ergebnisse und Einordnung Kleiüberdeckung




- Jährliche THG-Bilanzen: 29 bis 69 t CO₂-Äq. ha⁻¹ yr⁻¹
- Hohe und hoher Anteil von N₂O-Emissionen (6 bis 28 %)
- Beste Erklärung für CO₂-Emissionen: belüfteter Kohlenstoffvorrat
- Kein Unterschied zu nicht überdecktem Niedermoor im Hammelwarder Moor
 - Pumpgebiet Site PG1-PG5
 - Pumpgebiet Site PG6
 - Hammelwarder Moor Kontrolle Altnarbe
 - Literaturdaten ("peaty clay", Niederlande)
 - Literaturdaten Nieder- und Anmoorstandorte (DE)
 - Lineare Regression Sites PG1-PG5 ($R^2 = 0.85$):
 - Lineare Regression PG1-PG5 + Schrier-Uijl et al. (2014) $(R^2 = 0.77)$

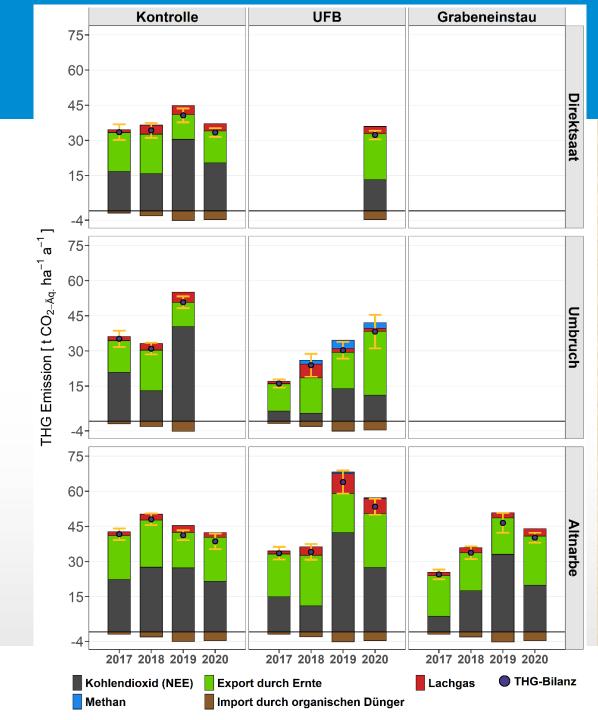
Messvarianten Niedermoorgrünland

- Erdniedermoor: 1,10 bis 1,35 m Radizellentorf (+ Schilf) über lagunären Sedimenten
- 4 Schnitte (2019: 3 Schnitte)
- Stickstoffdüngung: 167-240 kg N ha⁻¹ a⁻¹ (Rindergülle & mineralischer Dünger)
- Voll faktorielles Messdesign aus Ressourcengründen nicht umsetzbar
- Messung über vier Jahre



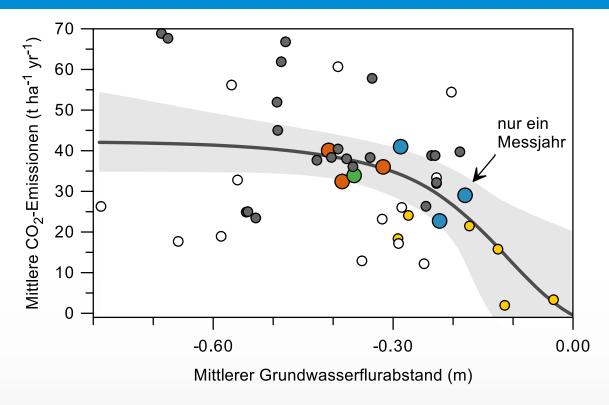
Auswirkungen Grünlanderneuerung

Kumulative Lachgasemissionen Unterflurbewässerung Niedermoorgrünland



- UFB Umbruch: Erhöhte Emissionen über zwei Jahre (Abbildung)
- Kontrolle Umbruch: stark erhöhte
 Emissionen (~ 500%) erstes Jahr nach
 Umbruch, bis zum Auftreten der
 Mäusekalamität Ende 2020 signifikant
 erhöht
- Kontrolle Direktsaat: erhöhte Emissionen (~300%) erstes Jahr nach Erneuerung, bis zum Auftreten der Mäusekalamität signifikant erhöht

Jährliche Treibhausgasbilanzen

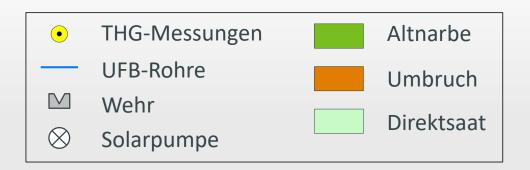

Alle Messvarianten Niedermoorgrünland

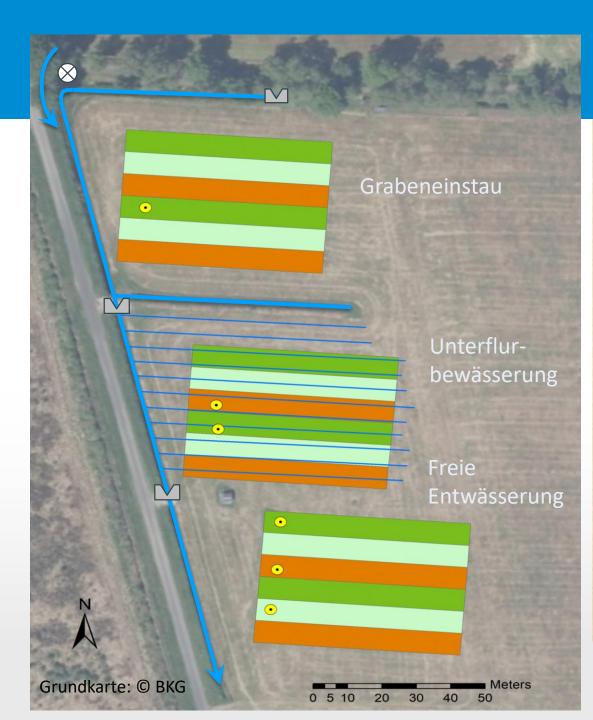
- THG-Emissionen der Kontrollvarianten (Ausnahme: Umbruch) zeitlich recht konstant
- Unterflurbewässerung: CO₂-Emissionen (NEE + Kohlenstoffexport durch Ernte) sehr variabel und tendenziell im Projektverlauf ansteigend
- Überall wichtigste Komponente: CO₂
- Im Mittel höhere Lachgas- und Methanemissionen bei Unterflurbewässerung

Einordnung mittlere jährliche CO₂-Emissionen

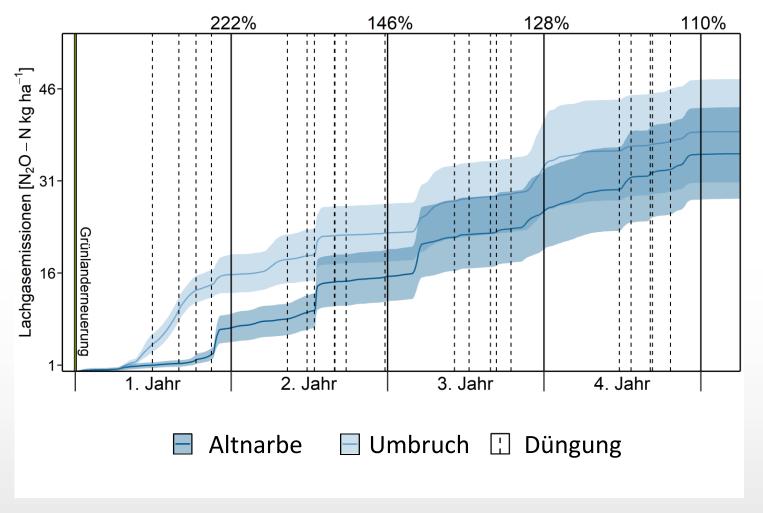
Niedermoorgrünland

- Kontrollen
- Unterflurbewässerung
- Grabeneinstau


- bisherige Messwerte Grünland auf Niedermoor
- O bisherige Messwerte sehr extensives Grünland auf Niedermoor (N-Düngung < 50 kg ha⁻¹ yr⁻¹)
- bisherige Messwerte seggenreiches
 Grünland auf Niedermoor, ungedüngt
- Gompertz-Model

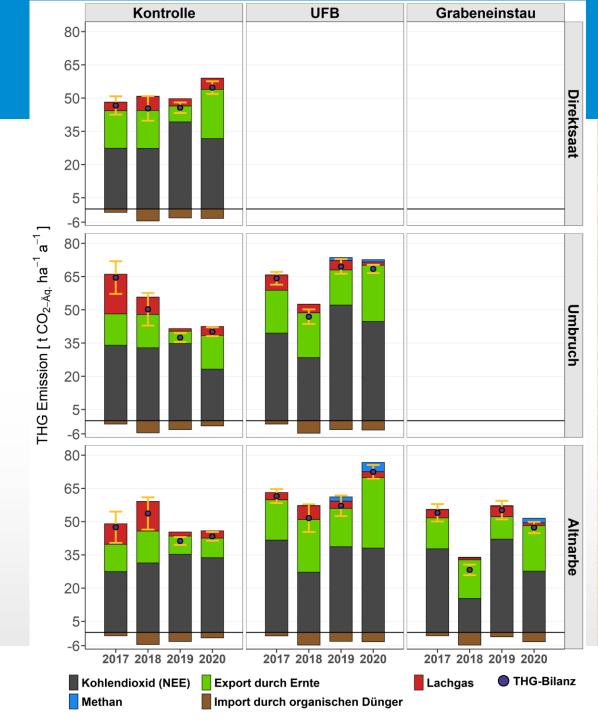

- Modellfit ohne SWAMPS-Daten
- CO₂-Emissionen entsprechen den Erwartungen bzw.
 bisherigen Messungen an Grünlandstandorten auf Niedermoor
- Grabeneinstau: aufgrund der im Mittel nicht von den Kontrollen unterscheidbaren Moorwasserständen kein Effekt auf CO₂
- Unterflurbewässerung: Effekt der leicht verminderten CO₂-Emissionen wird durch erhöhte N₂O- und CH₄-Emissionen aufgewogen

Messvarianten Hochmoorgrünland


- Erdhochmoor: 2,00 bis 2,55 m; Weißtorf über Schwarztorf
- Messung über vier Jahre ("typische" Projekte: zwei Jahre);
 auch hier voll faktorielles Messdesign aus Ressourcengründen nicht umsetzbar
- 3-5 Schnitte
- Stickstoffdüngung:
 - 167-357 kg N ha⁻¹ a⁻¹ (Rindergülle & mineralischer Dünger)
 - Altnarbe: 2020 weniger Dünger aufgrund fehlender
 Grasnarbe nach Mäusekalamität

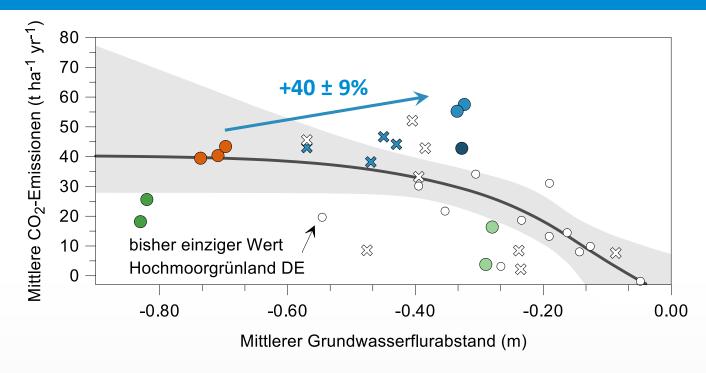
Auswirkungen Grünlanderneuerung

Kumulative Lachgasemissionen Unterflurbewässerung Hochmoorgrünland



- Trockene Verhältnisse beim Umbruch
- UFB Umbruch: erhöhte Emissionen über 1,5
 Jahre (Abbildung)
- Kontrolle Umbruch: stark erhöhte
 Emissionen (~ 200%) erstes Jahr nach
 Umbruch, dann Abschwächung des Effekts
- Kontrolle Direktsaat: niedrigere Emissionen (~60%) erstes Jahr nach Erneuerung, setzt sich bis zu Mäusekalamität 2020 fort

Jährliche Treibhausgasbilanzen


Alle Messvarianten Hochmoorgrünland

- Kontrollvarianten bezüglich CO₂ (NEE + Export) ähnlich und trotz Rekordsommer 2018 und Mäusekalamitäten 2019 über die Jahre weitgehend konstant.
- UFB: erhöhte CO₂-Emissionen
- Höchste CO₂-Emissionen UFB in nassesten Jahren (2019 und 2020)
 - → nach vier Jahren kein Verklingen eines möglichen Übergangseffekts zu erkennen
- UFB und Grabeneinstau: Niedrigere Lachgas- und höhere Methanemissionen als Kontrollvarianten
- Grabeneinstau: ähnliche CO₂-Emissionen wie Kontrollvarianten

Einordnung mittlere jährliche CO₂-Emissionen

Hochmoorgrünland

Bisherige Studien

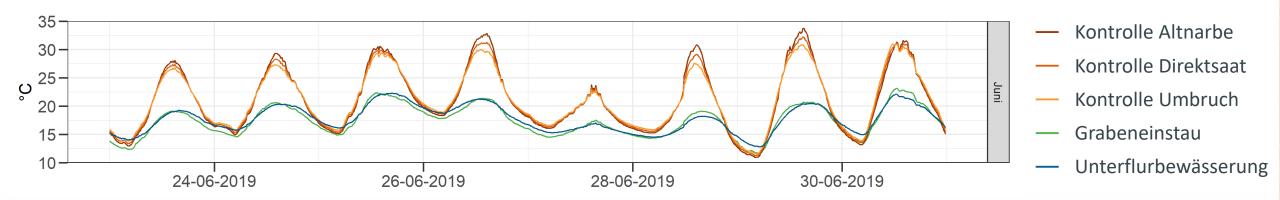
- Hochmoorgrünland DE (Tiemeyer et al., 2016)
- Hochmoorgrünland (Kontrolle) (Weideveld et al., 2021)
- (Weideveld et al., 2021)

Unterflurbewässerung

Gompertz-Modell

SWAMPS

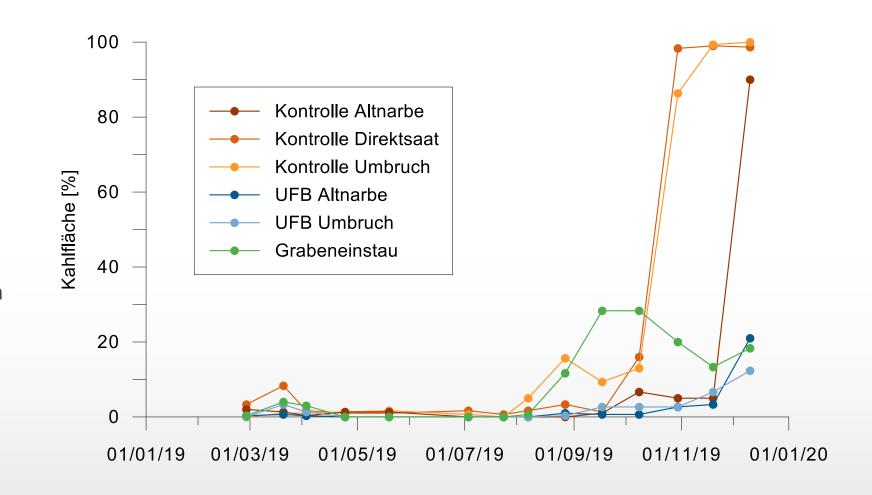
- Kontrolle
- Unterflurbewässerung
- Grabeneinstau


Gnarrenburger Moor

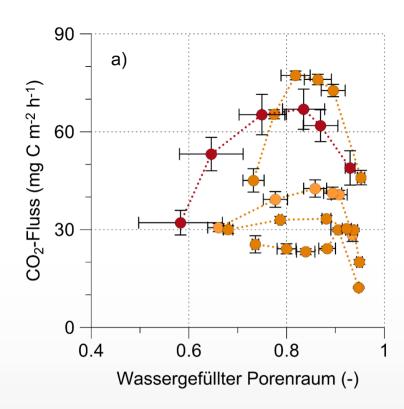
- Kontrolle
- Unterflurbewässerung

- Modellfit ohne Daten von SWAMPS und aus dem Gnarrenburger Moor.
- CO₂-Emissionen hoch, aber Großteil der Daten aus Hochmoorgrünländern in DE von sehr extensiven Standorten.
- Niederlande (Weideveld et al., 2021): kaum Effekte der UFB, da kaum Wasserstandseffekt.
- Gnarrenburger Moor: Daten vorläufig, extrem hohe Lachgasemissionen.
- Folgende Folien: Erklärungsansätze für hohe CO₂-Emissionen im Ipweger Moor

Vergleichsdaten: Tiemeyer et al. (2016), Weideveld et al. (2021)

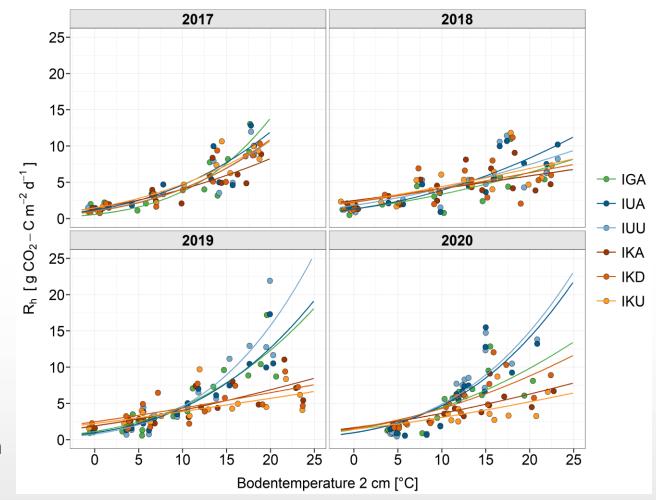

Hohe Temperaturen 2018 und 2019

- Bodentemperaturen in 2 cm Tiefe in einer Beispielwoche im Juni 2019
- Hohe Lufttemperaturen betreffen alle Messvarianten, aber puffernder Effekt durch hohe Wassergehalte bei UFB und Grabeneinstau: höhere CO₂-Emissionen <u>trotz</u> niedrigerer Bodentemperaturen
 - → Witterung kein plausibler Erklärungsansatz für Unterschiede zwischen Kontrolle und UFB



- Hohe Temperaturen 2018 *
- Mäusekalamität 2019
- Mäusekalamitäten betrafen vor allem die Kontrollvarianten
- Diese wiesen jedoch über die Jahre konstante CO₂-Emissionen auf (Folie 16)
- Keine Auffälligkeiten in
 Rohdaten, die auf
 "Mausatmung" hinweisen

- Hohe Temperaturen 2018 *
- Mäusekalamität 2019 x
- Optimale Bodenfeuchte <u>im Oberboden</u> für mikrobiellen Umsatz bei gleichzeitig hohen Temperaturen
 - Inkubationsversuch mit Proben u.a. aus dem Ipweger Moor zeigte höchste Respirationsraten bei hohen Bodenfeuchten (SÄURICH et al., 2019)
 - Hochmoorböden: günstige Umsetzungsbedingungen vor allem im Oberboden (SÄURICH et al., 2019), auch hier ab ca. 20 cm Tiefe trotz tiefer Entwässerung gut erhaltener Weißtorf



- Ipweger Moor
- weitere Moorböden unter Grünlandnutzung

Daten Inkubationsversuch: Säurich et al. (2019)

Seite 20

- Hohe Temperaturen 2018 *
- Mäusekalamität 2019 x
- Optimale Bodenfeuchte <u>im Oberboden</u> für mikrobiellen Umsatz bei gleichzeitig hohen Temperaturen ✓
- Erhöhte Temperatursensitivät unter günstigen
 Bodenfeuchtebedingungen (siehe auch MÄKIRANTA et al., 2009)
 - Bodenatmung (R_h) über vereinfachte Abschätzung ermittelt (GILMANOV et al., 2007)
 - Hohe Temperatursensitivität tritt v.a. in den letzten beiden besonders feuchten Messjahren auf

- Hohe Temperaturen 2018 *
- Mäusekalamität 2019 x
- Optimale Bodenfeuchte <u>im Oberboden</u> für mikrobiellen Umsatz bei gleichzeitig hohen Temperaturen ✓
- Erhöhte Temperatursensitivät unter günstigen
 Bodenfeuchtebedingungen (siehe auch MÄKIRANTA et al., 2009) ✓
- Verbesserter Nährstoffrückhalt durch
 Wasserrückhalt ?
- Nicht untersucht: Mögliche Emissionsminderung durch Wasserstandsanhebung <u>und</u> Extensivierung

Schlussfolgerungen

- **Kleiüberdeckung:** THG-Emissionen entsprechen Niedermoorstandorten mit ähnlichen Moorwasserständen.
- > Niedermoorgrünland: Geringe Effekte vermutlich aufgrund geringer Anhebung der Moorwasserstände.
- Hochmoorgrünland: Trotz deutlich angehobener Moorwasserstände lagen sowohl CO₂- als auch THG-Emissionen der Messvarianten mit Unterflurbewässerung deutlich über denen der Kontrolle, während beim Grabeneinstau kein Unterschied festzustellen war.
- ➤ Bisherige Ergebnisse zur Emissionsminderung durch extensiv genutztes Nassgrünland und *Sphagnum*-Paludikulturen werden durch die Ergebnisse nicht in Frage gestellt, da diese Systeme keine Düngung erhalten und im Falle der Paludikulturen auf standorttypische Pflanzen und naturnahe Wasserstände setzen.
- Aufgrund der erhöhten Treibhausgasemissionen kann die Unterflurbewässerung derzeit nicht als Klimaschutzmaßnahme für intensiv bewirtschaftetes Hochmoorgrünland empfohlen werden.

Referenzen

- GILMANOV TG, SOUSSANA JF, AIRES L, ET MULTI AL. (2007) Partitioning European grassland net ecosystem CO₂ exchange into gross primary productivity and ecosystem respiration using light response function analysis. Agriculture, Ecosystems and Environment 121: 93-120, https://doi.org/10.1016/j.agee.2006.12.008
- HÜPPI R, FELBER R, KRAUSS M, SIX J, LEIFELD J, FUß R (2018) Restricting the nonlinearity parameter in soil greenhouse gas flux calculation for more reliable flux estimates. PLoS ONE 13(7):e0200876, https://doi.org/10.1371/journal.pone.0200876
- MÄKIRANTA P., LAIHO, R., FRITZE, H., HYTÖNEN, J., LAINE, J., MINKKINEN, K. (2009) Indirect regulation of heterotrophic peat soil respiration by water level via microbial community structure and temperature sensitivity. Soil Biology and Biochemistry 40: 1592–1600, https://doi.org/10.1016/j.soilbio.2009.01.004
- OESTMANN J, TIEMEYER B., DÜVEL D, GROBE A, DETTMANN U (2021) Greenhouse gas balance of *Sphagnum* farming on highly decomposed peat at former peat extraction sites. Ecosystems, im Druck, https://doi.org/10.1007/s10021-021-00659-z
- POYDA A, REINSCH T, KLUß C, LOGES R, TAUBE F (2016) Greenhouse gas emissions from fen soils used for forage production in northern Germany. Biogeosciences 13: 5221–5244, https://doi.org/10.5194/bg-13-5221-2016
- SÄURICH A, TIEMEYER B, DETTMANN U, DON A (2019). How do sand addition, soil moisture and nutrient status influence greenhouse gas fluxes from drained organic soils? Soil Biology and Biochemistry 135: 71–84, https://doi.org/10.1016/j.soilbio.2019.04.013
- SCHRIER-UIJL AP, KROON PS, HENDRIKS DMD, HENSEN A, VAN HUISSTEDEN J, BERENDSE F, VEENENDAAL EM (2014) Agricultural peatlands: towards a greenhouse gas sink a synthesis of a Dutch landscape study. Biogeosciences 11: 4559–4576, https://doi.org/10.5194/bg-11-4559-2014
- TIEMEYER B, ALBIAC BORRAZ E, AUGUSTIN J ET MULTI AL. (2016) High emissions of greenhouse gases from grasslands on peat and other organic soils. Global Change Biology 22: 4134–4149, https://doi.org/10.1111/gcb.13303
- TIEMEYER B, FREIBAUER A, ALBIAC BORRAZ E, ET MULTI AL. (2020) A new methodology for organic soils in national greenhouse gas inventories: data synthesis, derivation and application. Ecological Indicators 105838, https://doi.org/10.1016/j.ecolind.2019.105838
- WEIDEVELD STJ, LIU W, VAN DEN BERG M, LAMERS LPM, FRITZ C (2021) Conventional sub-soil irrigation technique does not lower carbon emissions from drained peat meadows. Biogeosciences 18: 3881–3902, https://doi.org/10.5194/bg-18-3881-2021